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In the hexatic-B* phase the bonds defined by the long-range bond-orientational order are spiraling about the
axis normal to the smectic layers. Apart from the bond ordering for the mass centers, a helical alignment of the
molecular long axes characterized by a director field exists in some hexatic phases with tilted molecules. A
continuum elastic distortion theory of liquid crystals predicts the existence of two possible configurations. If
the commensurate configuration is stable, the director and the bond field are locked together, forming a
common helix for both degrees of freedom. In the incommensurate state the director alignment differs from the
alignment of the bonds so that two different helices occur. A phase diagram is proposed that includes three
commensurate phasesI * ,F* ,L* and the incommensurate state. The incommensurate state becomes stable if
the coupling between the director and the bond field is sufficiently small.@S1063-651X~97!06506-9#

PACS number~s!: 61.30.2v, 64.70.Rh

PHYSICAL REVIEW E
STATISTICAL PHYSICS, PLASMAS, FLUIDS,
AND RELATED INTERDISCIPLINARY TOPICS

THIRD SERIES, VOLUME 56, NUMBER 1 PART B JULY 1997

ARTICLES
ri
lin
o
ica
ta
le
a
h
ce
ith
ol
w
,
g

t
-
m
ta
t
h

il
ive
i

d

xa-

tic
ect

d-
the

a

l

a
ally.
ers
es.
to
I. INTRODUCTION

The broken translational symmetry in a crystal necessa
entails long-range orientational order, since the crystal
axes define some preferred directions. A second type of
entational order results from the alignment of nonspher
molecules in liquid crystals. For example, the nematic s
is characterized by the parallel alignment of long partic
whose centers of gravity are randomly distributed as in
ordinary liquid. There is also another possibility to break t
rotational symmetry of phases with molten crystalline latti
The sixfold rotation axis of hexatic liquids is associated w
the ordering of the lines joining neighboring atoms or m
ecules. Hexatic order has been observed in both t
dimensional and three-dimensional systems, for example
free standing liquid crystal films, colloidal systems, in ma
netic bubble arrays, and Langmuir-Blodgett films@1#.

Especially, much work has centered around hexa
phases of liquid crystals@2–8#. The molecules of a hexatic
B phase are arranged in a stack of layers in which the
lecular long axes are parallel to the layer normal. A crys
line lattice does not exist in the smectic layer planes, bu
long-range bond-orientational order was found to occur. T
order results from the alignment of the lines~bonds! connect-
ing the centers of gravity of neighboring molecules. For
lustrating this peculiar alignment of the bonds it is instruct
to consider the local hexagon formed by a molecule and
six nearest neighbors~Fig. 1!. In contrast to the disordere
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smectic-A phase, which has no in-plane ordering, these he
gons are aligned macroscopically in the hexatic-B phase.
Then the rotational symmetry is broken and theB phase has
a sixfold symmetry axis parallel to the normal of the smec
layers. The orientation of the hexagonal clusters with resp
to a fixed axis is determined by an angleh, as shown in Fig.
1. In order to describe both the strength of the bon
orientational order and the alignment of the hexagons
complex order parameterb5ucuexp(6ih) has been intro-
duced@1#. The coefficientucu could be normalized in such
way that the conditionubu5ucu51 is satisfied for a perfectly
ordered hexatic phase. In the smectic-A phase the hexagona
clusters are randomly oriented andb is equal to zero.

FIG. 1. In the hexatic-B phase the local hexagons formed by
molecule and its six nearest neighbors are aligned macroscopic
Besides the sixfold rotation axis perpendicular to the smectic lay
there are also six twofold rotation axes parallel to the layer plan
A deviation of the local hexagon from its initial position due
elastic distortions can be defined by the angleh.
531 © 1997 The American Physical Society
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532 56P. SCHILLER AND F. ZEITLER
A. Elastic distortion energy associated with the rotation
of the bond net

The equationC6b5b ~whereC6b is the resulting struc-
ture after a 2p/6 rotation! symbolizes that a rotation of th
whole hexatic structure about thez axis by an angle 2p/6
does not change the order parameter. On the other h
using Fig. 1, a simple geometrical consideration shows
turning around aC2 axis inverts thez axis and transforms the
angleh into h→mp/32h ~m, integer!. Hence it follows
that C2b5b* and z→2z. Mirror planes existing in the
nonchiral hexatic-B phase transformb into b* without
changing z. In this case only two quadratic termsbb*
5ucu2 and]zb]zb*5u]zcu2136ucu2(]zh)2 are found to be
invariant. If the material consists of chiral molecules mirr
planes are forbidden, then the Lifshitz termL5 i (b]zb*
2b* ]zb)526ucu2]zh has to be taken into account add
tionally. As the gradientu]zcu is negligibly small beyond the
critical temperature of the Sm-A–Sm-B phase transition, we
arrive at the elastic free energy densityf B5 1

2K6(]zh)
2

2R6]zh, where the notationK6572K6
0ucu2 and R6

56R6
0ucu2 is used~K6

0 andR6
0 are material constants!. Mini-

mizing the free energy*dz fB yields h(z)5qz1const with
q5R6 /K6 . Obviously, the bond net of the chiral hexatic-B
phase winds around the axis normal to the smectic lay
This result is already discussed in Ref.@8# using the Orsay
group formulation of the continuum theory for smec
phases.

We mention that nonhomogeneous ground states w
also found in other chiral systems with bond-orientatio
order. Periodic distortions visible by a striped texture a
stable in Langmuir monolayers@9#. The helical alignment of
the bonds in a chiral nematic phase with bond-orientatio
order was recently discussed@10#. This structure is similar to
the helical alignment of the bonds predicted for the ch
hexatic-B phase.

B. Elastic free energy associated with the azimuthal tilt angle

There are also hexatic phases with molecules tilted
wards the smectic layer planes@2–7#. It is useful to introduce
a unit vectorn called the director~Fig. 2!, which is parallel
to the local direction of the long molecular axes. The sme
phasesI , F, andL are distinguished by the director orient
tion with respect to the bonds. In the smectic-I phase
(Sm-I ) the director is tilted towards an apex of the loc
hexagon, while in the smectic-F phase (Sm-F) the tilt direc-
tion is locked halfway between two local bonds. T
smectic-L phase is defined by an asymmetrical tilt directio
Only the phases Sm-I and Sm-F were identified in thermo-
tropic liquid crystal compounds. However, the smecticL
phase was recently detected in the phase sequence of a
phatidylcholine multimembrane@7#.

The complex order parameterj5u exp(if) is useful to
characterize the tilt order in smectic liquid crystals@11#. We
assume that the polar angleu remains constant in a distorte
sample, since the torque required for changing the azimu
director rotation is much lower. Then the free energy den
due to director rotations depends on the spatial derivative
the azimuthal anglef. For our purposes it is sufficient t
consider distortions with gradients parallel to thez axis. In
this case the bilinear expressions]zj]zj*5u2(]zf)

2 and
d,
at

r

s.

re
l
e

al

l

-

ic

l

.

os-

al
y
of

L85 i (j]zj*2j* ]zj)52u2]zf lead to the free energy
density f C5 1

2K1(]zf)
22R1]zf while K15K1

0u2 and R1

5R1
0u2 ~K1

0 andR1
0 are material constants!. Minimizing the

free energy*dz fC , the helical director alignmentf(z)
5q̂z1const withq̂5R1 /K1 is found to be stable. This con
figuration exists in the smectic-C* phase, as there the bond
orientational order is rather weak@12#. When the hexatic
ordering becomes remarkably strong, however, the hel
alignment can be modified due to the coupling between
director and the bond field.

C. Free energy for elastic distortions including coupling terms

Finally, the free energy density is written asf5 f B1 f C
1 f BC , where the additional termf BC characterizes the cou
pling between the director and the bond field. Modifyin
slightly the free energy proposed by Selinger and Nelson@3#,
we get

F5
1

L E
0

L

dzF12 K1~]zf!21
1

2
K6~]zh!21K16]zf]zh

2R1]zf2R6]zh1V~f2h!G , ~1!

where the term proportional toK16 and the contribution

V~f2h!52h6cos6~f2h!2h12cos12~f2h! ~2!

account for the elastic and the direct coupling between
director and the bond field, respectively. Obviously, expr
sion ~2! does not exactly display the symmetry of the stru
ture, as the local hexagon is elongated parallel to the
direction of the molecules. Thus a sixfold symmetry ax
C6 for the bond net cannot exist. But for small tilt anglesu
the simplified expression~2! should be sufficient for describ
ing the essential physics of the system@3#.

In the nonchiral phases Sm-I , Sm-F, and Sm-L the linear
gradient terms2R1]zf and2R6]zh are equal to zero and
both the director and the bonds are homogeneously alig
The configuration in the corresponding chiral phasesI * ,

FIG. 2. The orientations of the director and the bonds are ch
acterized by the anglesf andh, respectively. The nonchiral phase
I , F, andL are distinguished by different equilibrium tilt direction
of the long molecules with respect to the bonds. In the chiral pha
I * , F* , andL* the director and the bonds are winding uniform
around thez axis so that the configuration in each smectic layer
the same as in the corresponding nonchiral phases. If the inc
mensurate configuration is stable, the director and the bond or
tations are out of phase.
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56 533HELIX CONFIGURATIONS IN CHIRAL HEXATIC . . .
F* , andL* ~an asterisk indicates chirality! is different due
to the linear gradient terms, which produce a helical alig
ment of the director and the bonds.

II. HELICAL ALIGNMENT FOR STRONG
AND WEAK COUPLING CONSTANTS

Concerning the helical alignment in the smectic pha
I * , F* , andL* , two configurations are possible. The dire
tor can be locked in the hexagonal net so that only one h
describing a uniform spiraling of the director and the bon
is present. This commensurate configuration is expecte
be stable if the coupling between the director and the bo
is relatively strong. Otherwise, if this coupling is sufficient
weak, both degrees of freedom are out of phase. Then
resulting incommensurate structure is more complex, cha
terized by a different helical alignment of the director and
bonds. Let us consider two borderline cases to illuminate
alignment in the incommensurate and the commensu
states. If the coupling is rather strong the differencef2h in
chiral hexatics is the same as in the nonchiral phases SI ,
Sm-F, and Sm-L. Minimizing the potential ~2! we get
h(z)5f(z)1h0 , where the constant angleh0 is defined by

h050 for h6.0 and 4h12.2h6 ~phase I * !,

h05p/6 for h6,0 and 4h12.h6 ~phaseF* !,
~3!

cos6h052h6 /~4h12! for h12,0

and uh6 /~4h12!u,1 ~phaseL* !.

Considering additionally the terms with spatial derivatives
the free energy~1!, the helical alignment

f~z!5qz and h~z!5qz1h0 , ~4!

with

q5
R11R6

K11K612K16

is found to be stable.
In the incommensurate state the director helix and

bond helix form a more complex structure@13#. As an illus-
tration we consider the borderline case which correspond
a very weak direct coupling between the director and
bonds ~uh6u→0 and uh12u→0!. Assuming thatuh6u5uh12u
50 and minimizing the free energy~1! yields the configu-
ration

f~z!5q1z and h~z!5q6z1ĥ0 , ~5!

where q15(K6R12K16R6)/(K1K62K16
2 ), q65(K1R6

2K16R1)/(K1K62K16
2 ), andĥ0 is an arbitrary constant. Ob

viously, the relations~5! describe two independent helice
with different pitch ~period!. However, it should be men
tioned that a complete decoupling of the director and
bonds, as suggested by these relations, is not possible. I
coupling constantsh6 andh12 are not exactly equal to zero
some correlations betweenf andh still remain.
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III. THE COMMENSURATE-INCOMMENSURATE
TRANSITION

A more complete description of the helical alignment
the incommensurate state requires the solution of the E
rian equation associated with the functional~1!. For this pur-
pose it is useful to apply the linear transformation@2,3#

L56~ah1bf! and V56~f2h!, ~6!

where a5(K61K16)/K, b512a, and K5K11K6
12K16. After evaluatingL andV, the anglesf andh will
be obtained from the inverse transformationsf5@L
1aV#/6 andh5@L2bV#/6. Omitting a constant term, th
free energy~1! is transformed into

F5
D

36KL E
0

L

dzF12 ~Vz2Q1!
21

K2

2D
~Lz2Q6!

21W~V!G ,
~7!

where the notation

W~V!52H6cosV2H12cos2V,

D5K6K12K16
2 .0, H65

36Kh6
D

,

H125
36Kh12

D
, Q65

6~R11R6!

K

and

Q15
6K~aR12bR6!

D

is used. Minimizing the functional~5! with respect toL, we
obtain straightforwardly

L5Q6z1L6 , ~8!

whereL6 is an integration constant. It remains to minimiz
the functional

F̂5
D

36KP E
0

P

dzF12 ~Vz2Q1!
21W~V!G , ~9!

where we have replaced the integration intervalL by the
distanceP within which V changes by 2p. If P!L the
boundary conditions forz50 andL do not remarkably in-
fluence the configuration in the bulk. An expression for t
free energy, possessing the same mathematical structu
Eq. ~9!, was studied by Dimitrienko and Belyakov@14# for
describing the helical director alignment in the smectic-C*
phase in an electric field. Thus we can mainly adapt th
calculations to our problem. The Eulerian equation

Vzz2H6sinV22H12sin2V50 ~10!

is a necessary condition for a minimum of the free ene
contribution ~9!. Equation ~10! has the simple solutionV
56h0 , where the angleh0 is defined by the relations~3!.
This solution corresponds to the commensurate helical di
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534 56P. SCHILLER AND F. ZEITLER
tor and bond alignment~4!. Now let us look for nontrivial
solutions of the differential equation~10!. The first integral is
found to be

1
2Vz

25W~V!1v, ~11!

and a second integration leads to

E
0

V dV8

6A2v12W~V8!
5z2z0 , ~12!

where the integration constantv will be obtained from the
condition that the functional~9! is a minimum. Close to the
threshold of the commensurate-incommensurate trans
Eq. ~12! describes a soliton lattice, e.g., a sequence of
mains within whichV is almost constant over long distance
ForH6.0 these domains are separated by a regular arra
walls. At each wall the differencef2h5V/6 switches by
p/3 @13#. For H12,0 and uH6 /(4H12)u,1 this picture is
slightly modified @14#, as the soliton lattice near to th
threshold is composed of two wall types; after a swit
2h0→1h0 of the angleV/65f2h ~mod p/3! follows a
second switchh0→2p2h0 . A further peculiarity refers to
the commensurate region in the phase diagram. It was sh
that a single domain wall can survive in the commensur
state @14#. However, a wall, where the differencef2h
changes by a small value (,30°), would be hardly detect
able in a macroscopic sample with a helical alignment of
director and the bonds. Therefore we do not consider
wall, which could appear in theL* phase.

The distance

P5E
0

2p dV8

6A2v12W~V8!, ~13!

within which the angleV changes by 2p is finite in the
incommensurate state. When the transition to the comm
surate state is approached, the denominator in the inte
~13! tends to zero and the periodP diverges. Using the firs
integral ~11!, the functional~9! is transformed into

36K

D
F̂ 5

1

P E
0

2p

6A2v12W~V!dV2
2pQ1

P
1
1

2
Q1
2.

Stability requires thatF̂ as a function ofv is a minimum. A
condition necessary for a minimum is

36K

D

]F̂

]v
5
1

P F E
0

2p dV

6A2v12W~V!
2PG

2
1

P2

]P

]v F E
0

2p

6A2v12W~V!dV22pQ1G50.

Taking into account the relation~13!, we obtain the equation

E
0

2p

6A2v12W~V!dV52pQ1 ~14!

connecting the integration constantv with Q1 . Comparing
both sides of Eq.~14!, the correct sign before the roo
A2v12W(V) in Eqs. ~12! and ~13! is found to be depen
n
-
.
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te

e
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dent on the sign ofQ1 . Generally, Eq.~14! has to be solved
numerically, but the threshold condition for th
commensurate-incommensurate transition can be expre
analytically in a similar way as the critical electrical field fo
unwinding the director helix of a smectic-C* phase@14#.
Since the potentialW(V) is minimized forV56h0 , Eq.
~14! is solvable only in those cases where the conditionv
1W(6h0).0 is satisfied. This condition guarantees that t
square rootA2v12W(V) is a real number for 0<V
,2p. Then the incommensurate state characterized by
~12! turns out to be stable. On the other hand, ifv
1W(6h0),0 the commensurate configuration~4! is the
only possible state. Therefore the conditionv52W(6h0) is
satisfied at the threshold of the commensura
incommensurate transition. Using this condition, the eq
tion

E
0

2p
A22W~6h0!12W~V!dV52puQ1u ~15!

allows us to derive analytical threshold formulas~see the
Appendix!. Three different cases have to be considered.

If H12.0 Eq. ~15! has the solution

H125
p2Q1

2~sinhp!4

4~sinh2p12p!2
and H6564H12/~sinhp!2,

~16!

where p is a parameter (0,p,`). For H12,0 and
uh6 /(4h12)u.1 the solution is expressed as

2H125
p2Q1

2~sinp!4

4~sin2p12p!2
and H6564~2H12!/~sinp!2,

~17!

and, finally, ifH12,0 anduh6 /(4h12)u,1, we obtain

2H125H Q1

@4~ tanp̂2 p̂!/p12#cosp̂J
2

,
~18!

H6564~2H12!cosp̂,

where 0, p̂,p/2.

IV. DISCUSSION OF THE PHASE DIAGRAM

The threshold formulas~16!–~18! of the commensurate
incommensurate transition are suitable to construct a ph
diagram for chiral hexatic phases. Introducing the dime
sionless coupling parametersĥ65H6 /Q1

25Gh6 and ĥ12
5H12/Q1

25Gh12 where

G5
~K11K612K16!~K1K62K16

2 !

@~K61K16!R12~K11K16!R6#
2 , ~19!

we obtain the lower diagram depicted in Fig. 3. In t
droplet-shaped region the incommensurate state chara
ized by two different helices for the director and the bo
field is stable. Outside this region the differencef2h is
constant and the relations~4!, which describe the commen
surate phasesI * , F* , andL* , are applicable.
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56 535HELIX CONFIGURATIONS IN CHIRAL HEXATIC . . .
In suitably designed chiral compounds or nonracem
mixtures the commensurate-incommensurate transition c
be driven by altering the helical pitch which depends on
concentration and the temperature. Substances with a s
pitch could be good candidates for the formation of the
commensurate state. According to Fig. 3 the incommensu
phase region is located in a restricted region around the
gin, where the modified coupling parametersĥ6 and ĥ12 are
sufficiently small. It is instructive to estimate the dependen
of ĥ6 and ĥ12 on the tilt angleu. The coefficientsh6 and
h12 entering into the potential~2! can be expressed in term
of the order parametersj and b. In the framework of a
Landau-Ginzburg theory the free energy density appropr
for describing tilted smectic phases contains the coup
term @15#

1
2h6

0@j6b*1~j* !6b#5h6
0u6ucucos6~f2h!.

The additional coupling term

1
2h12

0 @j12~b* !21~j* !12b2#5h12
0 u12ucu2cos12~f2h!

should be important if the material constanth6
0 becomes a

small quantity in the vicinity of the Sm-I –Sm-F phase tran-
sition temperature@3#. A comparison of these expression
with the coefficients in potential~2! suggests that the rela
tions h65h6

0u6ucu andh125h12
0 u12ucu2 are valid. Similarly,

the productLL8 of the Lifshitz termsL andL8 yields K16

5K16
0 u2c2. Furthermore, taking into account the previous

FIG. 3. Phase diagrams for nonchiral, chiral hexatic, and c
talline smectic phases with tilted molecules. The upper diagr
which refers to nonchiral materials, is proposed by Selinger
Nelson @3# in the framework of a mean field model for hexat
smectic phases. The lower diagram shows that chirality leads t
additional phase region, characterized by an incommensurate
cal alignment of the director and the bonds.
c
ld
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te
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found relationsK15K1
0u2, R15R1

0u2, K6572K6
0ucu2, and

R656R6
0ucu2, we obtain the expansions

ĥ65C1ucuu41C2ucu21u61••• ,
~20!

ĥ125C3ucu2u101C4u
121••• ,

where the coefficientsCn (n51,. . .,4) do not depend onu
and ucu. Obviously, by reducing the tilt angleu the incom-
mensurate phase region depicted in Fig. 3 could be achie
It should also be noted that the coefficienth6

0 is equal to zero
at the Sm-I * –Sm-F* phase transition temperature. In a v
cinity of this transition temperature the incommensurate s
is predicted to be stable ifĥ12,p2/16.

In the smectic phases Sm-J* and Sm-G* the bond net is
replaced by a crystalline lattice. The tilt direction of the lon
molecules with respect to the lattice is analogous to SmI *
and Sm-F* . However, because of the crystalline order, t
elastic constantK6 is considered infinite@2,3#. Consequently,
the angleh is constant and the free energy~1! may be written
as

F5
1

L E
0

L

dzF12 K1~]zf!22R1]zf2h6cos6~f2h0!

2h12cos12~f2h0!G .
Using the modified notationĥ65(K1 /R1

2)h6 and ĥ12
5(K1 /R1

2)h12 the phase diagram depicted in Fig. 3 rema
valid. The commensurate state is now characterized b
homogeneous alignment of both the director and the bo
~f50 andh5h0!. The conditionh5const is also satisfied
for the incommensurate state, but the director winds aro
thez axis, forming a helix. It is relatively easy to distinguis
between the helical and the homogeneous director alignm
in smectic crystals. For instance, the helical alignment of
director causes a very large optical activity and a selec
reflection of light. Kuscinsky and Stegemeyer@16# claimed
that the director configuration is different in two crystallin
smectic phases of the compound 4-~28-methylbutyl! phenyl-
48-n-oktylbiphenyl-4-carboxylate~CE8!. A helical director
alignment was found in one of these phases, which w
called Sm-J* in Ref. @16#. According to the classification
used in Fig. 3, this crystalline phase should be allocated
the incommensurate state. On the other hand, in the sme
G* phase of CE8 the director was found to be homo
neously aligned in accordance with the expected behavio
a commensurate crystalline configuration.

Unfortunately, the slight differences between the heli
director configurations in the commensurate and the inco
mensurate states of liquid crystalline hexatic phases
hardly observable by simple optical experiments. It is re
sonable to assume that the director and the bond field
thermotropic liquid crystals are usually locked togeth
forming the commensurate configuration. More sophistica
experiments are necessary to clarify whether the liquid cr
talline hexatic phases are always commensurate.
commensurate-incommensurate transition would be acc
panied with a texture change in thick homeotropica
aligned smectic films sandwiched between parallel pla
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536 56P. SCHILLER AND F. ZEITLER
Texture observations of CE8 indicated a reorganization
the director helix@16#, although the enthalpy of this phas
transition was found to be undetectably small. A furth
characterization of this transition requires detailed optical
periments. Investigating the propagation of a light bea
which is sent parallel to the helical axis (z), would provide
some information on the helical alignment of the direct
The transmission and reflection of light in chiral smec
liquid crystals is strongly wavelength dependent and co
be analyzed by applying the same methods as used for
lesteric liquid crystals@17#. In the incommensurate phase th
azimuthal director anglef, which is described implicitly by
Eqs.~6!, ~8!, and~12!, is no longer a simple linear functio
of the coordinatez. Consequently, the optical properties
the ideal director helix in the commensurate state are
pected to be different from the properties of the disturb
helix in the incommensurate state. It would be interesting
investigate how the director is connected to the bond ne
different chiral materials.

V. CONCLUSION

In conclusion, we found that two different configuratio
exist in chiral hexatic smectic phases with tilted molecul
If the commensurate configuration is stable, the director
the bond orientation are locked together, forming a comm
helix. In the incommensurate state both degrees of freed
are decoupled so that two different helices occur. A tran
tion from the commensurate to the incommensurate state
be driven by reducing the coupling between the director
the bond field. This coupling is weak in the vicinity of th
smectic-I * –smectic-F* phase transition temperature and
the molecular tilt angle is sufficiently small. For crystallin
smectic phases the incommensurate state is characterize
the existence of a director helix, while this helix is com
pletely unwound in the commensurate state.
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APPENDIX: THRESHOLD CONDITIONS
FOR THE INCOMMENSURATE STATE

Equation~15! is solved for three different cases.
(I) Case H12.0. If H12.0 we can chooseh050 for

H6.0 andh05p/6 for H6,0 and obtain

A22W~6h0!12W~V!

5A2H6~12cosV!12H12~12cos2V! for H6.0,

A22W~6h0!12W~V!

5A22H6~11cosV!12H12~12cos2V! for H6,0,

or written differently
f

r
-
,

.

d
o-

x-
d
o
in

.
d
n
m
i-
an
d

by

d
l-

A22W~6h0!12W~V!

52usin~V/2!uAH614H12cos
2~V/2!,

A22W~6h0!12W~V!

52ucos~V/2!uA2H614H12sin
2~V/2!.

Using the substitutionsy56cos(V/2) and y56sin(V/2)
Eq. ~15! is transformed into

2puQ1u58E
0

1

dyAuH6u14H12y
2516AH12E

0

1

dyAa21y2

58AH12@Aa2111a2arcsinh~1/a!#,

where

a25
uH6u
4H12

.

The substitutionp5arcsinh(1/a) which implies Aa211
5coshp/sinhp anda251/(sinhp)2, leads to the result

2puQ1u54AH12

sinh2p12p

~sinhp!2
,

~A1!

uH6u54H12/~sinhp!2,

which is equivalent to the relations~16!.
(II) Case H12,0 and uH6/4H12u.1. Choosingh0 as in

case~I! Eq. ~A1! is transformed into

2puQ1u516A2H12E
0

1

dyAb22y2,

where the notationb25uH6u/@4(2H12)# is used. Performing
the integration and introducing a parameterp̄5arcsin(1/b)
leads to the result

2puQ1u5
4A2H12~sin2p̄12p̄!

~sinp̄!2
,

~A2!

uH6u54~2H12!/~sinp̄!2,

which is equivalent to the relations~17!. The result~A2! can
also be obtained by replacingp by p̄/A21 in Eq. ~A1!.

(III) Case H12,0 and uH6/4H12u,1. Minimizing the
potentialW(V) yields

cosV052
H6

4H12
,

whereV056h0 . Now the positive square root can be wri
ten as

A22W~V0!12W~V!52A2H12ucosV2cosV0u.

Without loss of generality we can assume that2p,V0
<p. For 0,V0<p Eq. ~15! is expressed as
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2puQ1u52A2H12H E
V0

2p2Q0
~cosV02cosV!dV

1E
2p2V0

2p1V0
~cosV2cosV0!dVJ .

Thus we get 2puQ1u52A2H12(4sinV012pcosV0
24V0cosV0) or

2H125H Q1

@4~ tanV02V0!/p12#cosV0
J 2. ~A3!

In the other case, if2p,V0<0, Eq. ~15! is rewritten
y

.
Z

l-

ys
2puQ1u52A2H12H E
2V0

2p1V0
~cosV02cosV!dV

1E
2p1V0

2p2V0
~cosV2cosV0!dVJ .

Performing the integration yields

2puQ1u52A2H12~24sinV012pcosV014V0cosV0!

or

2H125H Q1

@24~ tanV02V0!/p12#cosV0
J 2. ~A4!

Finally, introducing a parameterp̂ with the definition p̂
5V0 for V0.0 and p̂52V0 for V0,0, Eqs. ~A3! and
~A4! can be unified so that we arrive at Eq.~18!.
o-

s-

.
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