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In the hexaticB* phase the bonds defined by the long-range bond-orientational order are spiraling about the
axis normal to the smectic layers. Apart from the bond ordering for the mass centers, a helical alignment of the
molecular long axes characterized by a director field exists in some hexatic phases with tilted molecules. A
continuum elastic distortion theory of liquid crystals predicts the existence of two possible configurations. If
the commensurate configuration is stable, the director and the bond field are locked together, forming a
common helix for both degrees of freedom. In the incommensurate state the director alignment differs from the
alignment of the bonds so that two different helices occur. A phase diagram is proposed that includes three
commensurate phasés,F* ,L* and the incommensurate state. The incommensurate state becomes stable if
the coupling between the director and the bond field is sufficiently sh&1063-651X%97)06506-9

PACS numbdps): 61.30—v, 64.70.Rh

[. INTRODUCTION smecticA phase, which has no in-plane ordering, these hexa-
gons are aligned macroscopically in the hex&ighase.
The broken translational symmetry in a crystal necessarilyrhen the rotational symmetry is broken and Bi@hase has
entails long-range orientational order, since the crystallineéd sixfold symmetry axis parallel to the normal of the smectic
axes define some preferred directions. A second type of orlayers. The orientation of the hexagonal clusters with respect
entational order results from the alignment of nonsphericalo a fixed axis is determined by an angjeas shown in Fig.
molecules in liquid crystals. For example, the nematic statd. In order to describe both the strength of the bond-
is characterized by the parallel alignment of long particlesofientational order and the alignment of the hexagons the
whose centers of gravity are randomly distributed as in affomplex order parametgB=|¢|exp(@7) has been intro-
ordinary liquid. There is also another possibility to break theduced[1]. The coefficientyf could be normalized in such a
rotational symmetry of phases with molten crystalline lattice &Y that the conditiong|=|i|= 1 is satisfied for a perfectly
The sixfold rotation axis of hexatic liquids is associated WithOrdeer hexatic phase. ".] the smediiphase the hexagonal
the ordering of the lines joining neighboring atoms or mol-CIUSterS are randomly oriented afds equal to zero.
ecules. Hexatic order has been observed in both two-
dimensional and three-dimensional systems, for example, in C
free standing liquid crystal films, colloidal systems, in mag-
netic bubble arrays, and Langmuir-Blodgett filfrig. 2
Especially, much work has centered around hexatic U
phases of liquid crystall2—8]. The molecules of a hexatic- C,m=0
B phase are arranged in a stack of layers in which the mo-
lecular long axes are parallel to the layer normal. A crystal-
line lattice does not exist in the smectic layer planes, but a
long-range bond-orientational order was found to occur. This i, 1. In the hexati® phase the local hexagons formed by a
order results from the alignment of the ling®nds connect-  molecule and its six nearest neighbors are aligned macroscopically.
ing the centers of gravity of neighboring molecules. For il- Besides the sixfold rotation axis perpendicular to the smectic layers
lustrating this peculiar alignment of the bonds it is instructivethere are also six twofold rotation axes parallel to the layer planes.
to consider the local hexagon formed by a molecule and itg deviation of the local hexagon from its initial position due to
six nearest neighbor&ig. 1). In contrast to the disordered elastic distortions can be defined by the angle
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A. Elastic distortion energy associated with the rotation
of the bond net

bond rotation director rotation

The equatiorCgB8= 8 (whereCgzg is the resulting struc- y
ture after a 2r/6 rotation symbolizes that a rotation of the P : znﬁ
whole hexatic structure about ttzeaxis by an angle /6 ® X
does not change the order parameter. On the other hand, *
using Fig. 1, a simple geometrical consideration shows that equilibrium configuration
i isi i oo ° o0
turning around &, axis inverts the axis and transforms the o °® 0 Jeow

angle » into »—m#/3— 7 (M, intege). Hence it follows
that C,8=8* and z— —z. Mirror planes existing in the
nonchiral hexati® phase transformg into B* without

® ® g ...smF ® ® smlL

: ; . * FIG. 2. The orientations of the director and the bonds are char-
changmg z In thls case Zonly tw20 quazdranc termsp acterized by the angles and 7, respectively. The nonchiral phases
= | 1/f|. andd,B4d,8* = |{9z¢| +36| Y (9,7)° arefoundtobe | £ gL are distinguished by different equilibrium tilt directions
invariant. If the material consists of chiral molecules mirror ¢ yhe 1ong molecules with respect to the bonds. In the chiral phases
planes are forbidden, then the Lifshitz tedn=i(83,8*  |* F* andL* the director and the bonds are winding uniformly
—B*3,8)=—6|y|?9,n has to be taken into account addi- around thez axis so that the configuration in each smectic layer is
tionally. As the gradiend,i| is negligibly small beyond the the same as in the corresponding nonchiral phases. If the incom-
critical temperature of the StA—Sm-B phase transition, we mensurate configuration is stable, the director and the bond orien-
arrive at the elastic free energy densify=3Kg(d,7)?>  tations are out of phase.
—Rgd,m, where the notationKg=72KZ¢|?> and Rg
=6RY| |2 is used(K? andR? are material constantsMini- L' =i(£0,6* —*9,£)=—6?9,¢ lead to the free energy
mizing the free energydzfy yields 7(z)=qz+const with ~ density fc=3K,(d,¢)°—R19,¢ while K;=K26% and R,
q=Rs/Kg. Obviously, the bond net of the chiral hexaBc- =R}6? (K$ andR? are material constantsMinimizing the
phase winds around the axis normal to the smectic layerdree energyfdzf., the helical director alignment)(z)
This result is already discussed in RES] using the Orsay =Qqz+ const withg=R; /K, is found to be stable. This con-
group formulation of the continuum theory for smectic figuration exists in the smectic* phase, as there the bond-
phases. orientational order is rather wedl2]. When the hexatic
We mention that nonhomogeneous ground states wererdering becomes remarkably strong, however, the helical
also found in other chiral systems with bond-orientationalalignment can be modified due to the coupling between the
order. Periodic distortions visible by a striped texture aredirector and the bond field.
stable in Langmuir monolayef9]. The helical alignment of
the bonds in a chiral nematic phase with bond-orientationat:, Free energy for elastic distortions including coupling terms
order was recently discussgtl]. This structure is similar to
the helical alignment of the bonds predicted for the chiral
hexaticB phase.

Finally, the free energy density is written &s fg+f¢
+fgc, where the additional terrfigc characterizes the cou-
pling between the director and the bond field. Modifying
slightly the free energy proposed by Selinger and Ne[Sbn
we get

There are also hexatic phases with molecules tilted to-
wards the smectic layer plangzs-7]. It is useful to introduce _ = dez
a unit vectorn called the directofFig. 2), which is parallel L Jo
to the local direction of the long molecular axes. The smectic
phased, F, andL are distinguished by the director orienta-
tion with respect to the bonds. In the smedtigghase
(Sm4) the director is tilted towards an apex of the local
hexagon, while in the smectie-phase (Sn¥) the tilt direc-  where the term proportional i€, and the contribution
tion is locked halfway between two local bonds. The
smectict phase is defined by an asymmetrical tilt direction. V(¢p—n)=—hgcos@dp— n)—hc0s12¢—7) (2)

Only the phases Srh-and Sm¥ were identified in thermo-

tropic liquid crystal compounds. However, the smettic- account for the elastic and the direct coupling between the
phase was recently detected in the phase sequence of a phdgector and the bond field, respectively. Obviously, expres-
phatidylcholine multimembrani]. sion (2) does not exactly display the symmetry of the struc-

The complex order parametér= 0 exp(¢) is useful to ture, as the local hexagon is elongated parallel to the tilt
characterize the tilt order in smectic liquid crystgld]. We  direction of the molecules. Thus a sixfold symmetry axis
assume that the polar angleemains constant in a distorted Cg for the bond net cannot exist. But for small tilt angles
sample, since the torque required for changing the azimuthdhe simplified expressiof2) should be sufficient for describ-
director rotation is much lower. Then the free energy densitying the essential physics of the systégj.
due to director rotations depends on the spatial derivatives of In the nonchiral phases Sim-Sm-F, and Smt the linear
the azimuthal anglep. For our purposes it is sufficient to gradient terms-R;d,¢ and —Rgd,n are equal to zero and
consider distortions with gradients parallel to thexis. In  both the director and the bonds are homogeneously aligned.
this case the bilinear expressiodstd,&* = 6?(9,¢)2 and  The configuration in the corresponding chiral phasés

B. Elastic free energy associated with the azimuthal tilt angle

1 2 1 2
E Ki(d,¢)°+ E Ke(d,1m)“+K1ed,09,7m

—R19,0—Rgd,n+V(d—17)|, @
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F*, andL* (an asterisk indicates chiraljtys different due lll. THE COMMENSURATE-INCOMMENSURATE
to the linear gradient terms, which produce a helical align- TRANSITION

ment of the director and the bonds. A more complete description of the helical alignment in

the incommensurate state requires the solution of the Eule-
Il. HELICAL ALIGNMENT FOR STRONG rian equation associated with the functiofil. For this pur-
AND WEAK COUPLING CONSTANTS pose it is useful to apply the linear transformat{@;3]

Concerning the helical alignment in the smectic phases _ _ .
I*, F*, andL*, two configurations are possible. The direc- A=6(an+p¢) and Q=6(¢d—7n), (6)
tor can be locked in the hexagonal net so that only one heli heare a=(Kg+Ki/K, B=1—a, and K=K;+Kg
describing a uniform spiraling of the director and the bonds+2Kl6_ After evaluatingA andQ), the anglesp and 7 will
is present. This commensurate configuration is expected t9,  ghtained from the inverse transformations=[ A

be stable if the coupling between the director and the bonds. «Q]/6 andp=[ A — BQ]/6. Omitting a constant term, the
is relatively strong. Otherwise, if this coupling is sufficiently ¢oq energy(1) is transformed into '

weak, both degrees of freedom are out of phase. Then the
resulting incommensurate structure is more complex, charac- A L
terized by a different helical alignment of the director and the F= 36KL f
bonds. Let us consider two borderline cases to illuminate the

alignment in the incommensurate and the commensurate @)
states. If the coupling is rather strong the differegce » in
chiral hexatics is the same as in the nonchiral phased ,Sm-
Sm-F, and Smt. Minimizing the potential(2) we get W(Q)=—Hgcod) —H;,c0s2),
7n(2) = ¢(2) + 19, where the constant anglg, is defined by

2

1 2 K 2
425 (0, Qu)?+ 55 (A~ Qe+ W(Q) |,

0

where the notation

) 36Khg
70=0 for h4=0 and 4,;,>—hg (phasel*), A=KgK;—K1>0, H6=T,
Mt et
cos6nyy=—hg/(4h,y) for hy,<O
and
and |hg/(4hy)|<1 (phasel*).
o g . . Lo 6K(aR;— BRy)
Considering additionally the terms with spatial derivatives in Q=——"7-—1—"7-—

the free energyl), the helical alignment A

is used. Minimizing the functiondb) with respect toA, we

$(2)=qz and 7(2)=qz+ 7o, @ obtain straightforwardly
with A=Qgz+Ag, 8
q= Ri+Rs whereAg is an integration constant. It remains to minimize
Ki+Kgt+2Kg the functional

is found to be stable. N P
In the incommensurate state the director helix and the F= 36KP J, dz
bond helix form a more complex structurg3]. As an illus-

tration we consider the borderline case which corresponds tQhere we have replaced the integration interkaby the
a very weak direct coupling between the director and thgjistanceP within which Q changes by 2. If P<L the
bonds (|hg|—~0 and [hy;|—0). Assuming thatlhg|=|h:J  poundary conditions for=0 andL do not remarkably in-
=0 and minimizing the free energil) yields the configu-  flyence the configuration in the bulk. An expression for the
ration free energy, possessing the same mathematical structure as
- Eq. (9), was studied by Dimitrienko and Belyakd®4] for
#(2)=0q:z and 7(2)=gez+ 70, (®  describing the helical director alignment in the sme@fc-

) phase in an electric field. Thus we can mainly adapt these
where  q,=(KeR; —K1eRe)/(K1Ke—Kig),  ds=(KiRs  calculations to our problem. The Eulerian equation
—K1eR)/ (K1 Kg— Kie), andnyg is an arbitrary constant. Ob-
viously, the relationg5) describe two independent helices Q,,—HgsinQ) —2H 1,5in20 =0 (10
with different pitch (period. However, it should be men-
tioned that a complete decoupling of the director and thds a necessary condition for a minimum of the free energy
bonds, as suggested by these relations, is not possible. If tleentribution (9). Equation(10) has the simple solutiof)
coupling constantig andh,, are not exactly equal to zero, =67y, where the angley, is defined by the relationg3).
some correlations betweef and » still remain. This solution corresponds to the commensurate helical direc-

1
> (Q,— Q)+ W(Q)|, (©)
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tor and bond alignmenfd). Now let us look for nontrivial dent on the sign o®,. Generally, Eq(14) has to be solved
solutions of the differential equatiqd0). The first integral is numerically, but the threshold condition for the
found to be commensurate-incommensurate transition can be expressed
Lo analytically in a similar way as the critical electrical field for
20;=W(Q)+ o, (1) unwinding the director helix of a smect@* phase[14].
Since the potentialW(()) is minimized forQ=6%,, EqQ.

and a second integration leads to (14) is solvable only in those cases where the condition

Q do’ +W(61,)>0 is satisfied. This condition guarantees that the
=7—2,, (12  square rooty2w+2W({) is a real number for &)
0 £N20+2W(Q') <2m. Then the incommensurate state characterized by Eq.

(12) turns out to be stable. On the other hand, aif
+W(67,)<0 the commensurate configuratiqd) is the
only possible state. Therefore the conditior —W(6 ) is

where the integration constant will be obtained from the
condition that the functiona) is a minimum. Close to the
threshold of t.he comm_ensuratgz-incommensurate tranSitiOQatisﬁed at the threshold of the commensurate-
Eq._ (12 _de_scnb_es a_sohton lattice, e.g., & sequence of OIO|'ncommensurate transition. Using this condition, the equa-
mains within which() is almost constant over long distances. tion
For Hg>0 these domains are separated by a regular array of0
walls. At each wall the differenceé— n=/6 switches by 27
/3 [13]. For H,,<0 and |Hg/(4Hy,)|<1 this picture is f V=2W(670)+2W(Q)dQ=27|Q,| (15
slightly modified [14], as the soliton lattice near to the 0
threshold is composed of two wall types; after a switch
— 79— + 79 Of the angleQ}/6= ¢—  (mod 7/3) follows a
second switchpy— 27— 7. A further peculiarity refers to
the commensurate region in the phase diagram. It was shown
that a single domain wall can survive in the commensurate 72Q2(sinhp)*
state [14]. However, a wall, where the differencgé— 7 Hi,=—————— and Hg=*4H,/(sinhp)?,
changes by a small value<30°), would be hardly detect- 4(sinhZp +2p) 16
able in a macroscopic sample with a helical alignment of the (16)
director and the bonds. Therefore we do not consider thig,nere p is a parameter (@p<w«). For Hy,<0 and

wall, which could appear in the* phase. |he/(4hy,)|>1 the solution is expressed as
The distance
7°Qi(sinp)* .
_ 27 dQ’ —lezm and H6=i4(—H12)/(S|np)2,
0 +\2wt2W(Q), (13) 17)

within which the angleQ) changes by # is finite in the and, finally, ifH,;,<<O and|hg/(4h;,)|<1, we obtain
incommensurate state. When the transition to the commen-

allows us to derive analytical threshold formulesee the
AppendiX. Three different cases have to be considered.
If H;,>0 Eg.(15) has the solution

P

surate state is approached, the denominator in the integral B Q; 2
(13) tends to zero and the perid®l diverges. Using the first —Hi= [4(tanp—p)/ 7+ 2]coD|
integral (11), the functional(9) is transformed into (18)

=+4(— N
36KIE_1J2W+ e T e 27Q; 1 He==4(—Hyycop,
AP EN20+2WIQ)dR = —5= 4 5 Q.

0 where 0<p< /2.
Stability requires thaE as a function ofw is a minimum. A IV. DISCUSSION OF THE PHASE DIAGRAM

condition necessary for a minimum is
The threshold formula$16)—(18) of the commensurate-

36K 9F 1 27 do incommensurate transition are suitable to construct a phase
A do Pl TZW(Q)_P d_|agram for ch_|ral hexatic phAas_es. Intrzoijucmg the dimen-
sionless coupling parametetss=Hg/Q7=I'hg and hy,
1 9P (2~ =H;,/Q?=Th,, where
“B2m V2w +2W(Q)dQ —-27Q, |=0.
0
_ (Ky+Kg+2Kyg) (K1Ke—KZ) 19
Taking into account the relatiof13), we obtain the equation T [(Kg+ KR — (K +Kig)Rg]?
B o OO — btain the lower diagram depicted in Fig. 3. In the
N _ we o _ :
0 =V20T2W(Q)dQA=27Q, (14 droplet-shaped region the incommensurate state character-

ized by two different helices for the director and the bond
connecting the integration constaatwith Q,. Comparing field is stable. Outside this region the differenge- » is
both sides of Eq.(14), the correct sign before the root constant and the relatiorig), which describe the commen-
V2w +2W(Q) in Egs.(12) and (13) is found to be depen- surate phasek’, F*, andL*, are applicable.
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Phase Diagrams found relationsk,=K%6?, R;=R%6?, K¢=72K2|#|?, and
Rs=6R3| |2, we obtain the expansions

sml (smJ) he=Cy| 4] 6+ Cyl | 26%+--- , 0

hip=Col 26"+ C,6"%+ - ,

where the coefficient€, (n=1,...,4) do not depend oa

and |¢|. Obviously, by reducing the tilt anglé the incom-

, mensurate phase region depicted in Fig. 3 could be achieved.
It should also be noted that the coefficidégtis equal to zero

at the Smt* —Sm+* phase transition temperature. In a vi-
cinity of this transition temperature the incommensurate state
is predicted to be stable if;,< 7/16.

In the smectic phases Sidf- and SmG* the bond net is
replaced by a crystalline lattice. The tilt direction of the long
molecules with respect to the lattice is analogous to ISm-
(smG*) and SmF*. However, because of the crystalline order, the
I elastic constari is considered infinitg2,3]. Consequently,
sl L ! the angley is constant and the free enerdy may be written

06 -03 00 03 06 09 as

h12

sml* (smJ¥)

B *
rsmL smF*

1
5 Ki(9200)* = Ry9,¢p— 0S8 ¢ 7o)

L
FIG. 3. Phase diagrams for nonchiral, chiral hexatic, and crys- F L fo dz

talline smectic phases with tilted molecules. The upper diagram,

which refers to nonchiral materials, is proposed by Selinger and

Nelson[3] in the framework of a mean field model for hexatic — 1200812 ¢~ 779)

smectic phases. The lower diagram shows that chirality leads to an

additipnal phase regiqn, characterized by an incommensurate helijsing the modified notationFlf,:(KllRf)hG and 512

cal alignment of the director and the bonds. =(K;/R?)h,, the phase diagram depicted in Fig. 3 remains

] ) . _valid. The commensurate state is now characterized by a

In suitably designed chiral compounds or nonracemiq,omogeneous alignment of both the director and the bonds

mixtures the commensurate-incommensurate transition Coulgﬁzo and 5= 1,). The condition=const is also satisfied

be driven by altering the helical pitch which depends on thegy the incommensurate state, but the director winds around
concentration and the temperature. Substances with a shqffe ;7 axis, forming a helix. It is relatively easy to distinguish
pitch could be good candidates for the formation of the in-pepyeen the helical and the homogeneous director alignment
commensurate state. According to Fig. 3 the incommensuraig smectic crystals. For instance, the helical alignment of the
phase region is located in a restricted region around the Orijrector causes a very large optical activity and a selective
gin, where the modified coupling parametégsandh;, are  reflection of light. Kuscinsky and Stegemeyds] claimed
sufficiently small. It is instructive to estimate the dependencehat the director configuration is different in two crystalline
of hg and hy, on the tilt angleé. The coefficientshg and  smectic phases of the compound2-methylbuty) phenyl-

h;, entering into the potentigR) can be expressed in terms 4’-n-oktylbiphenyl-4-carboxylat€CES. A helical director

of the order parameter§ and B. In the framework of a alignment was found in one of these phases, which was
Landau-Ginzburg theory the free energy density appropriatealled SmJ* in Ref. [16]. According to the classification
for describing tilted smectic phases contains the couplingised in Fig. 3, this crystalline phase should be allocated to

term[15] the incommensurate state. On the other hand, in the smectic-
G* phase of CE8 the director was found to be homoge-
IhQ£58% +(£%)°B1=h26% y|cosG d— 7). neously aligned in accordance with the expected behavior of
a commensurate crystalline configuration.
The additional coupling term Unfortunately, the slight differences between the helical

director configurations in the commensurate and the incom-
mensurate states of liquid crystalline hexatic phases are
hardly observable by simple optical experiments. It is rea-
sonable to assume that the director and the bond field in
should be important if the material constaif becomes a  thermotropic liquid crystals are usually locked together,

small quantity in the vicinity of the Snh—Sm+ phase tran-  forming the commensurate configuration. More sophisticated
sition temperaturd3]. A comparison of these expressions experiments are necessary to clarify whether the liquid crys-
with the coefficients in potential2) suggests that the rela- talline hexatic phases are always commensurate. The
tions hg=h26% | andh,,=h%,6'4 |2 are valid. Similarly, commensurate-incommensurate transition would be accom-
the productLL’ of the Lifshitz termsL andL’ yields K;s  panied with a texture change in thick homeotropically

=K$662¢,//2. Furthermore, taking into account the previously aligned smectic films sandwiched between parallel plates.

L E(B*) 2+ (£4)128%]1=h1,6™ y|*cos12— n)
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Texture observations of CE8 indicated a reorganization of/—2w(67,)+2W(Q)
the director helix{16], although the enthalpy of this phase
transition was found to be undetectably small. A further =2|sin(Q/2)|\/H6+4H120052(Q/2),
characterization of this transition requires detailed optical ex-
periments. Investigating the propagation of a light beam,/—2W(67,) +2W(Q)
which is sent parallel to the helical axig)( would provide
some information on the helical alignment of the director. = 2|cogQ/2)|—Hg+4H1;8inP(Q/2).
The transmission and reflection of light in chiral smectic
liquid crystals is strongly wavelength dependent and couldsing the substitutiony= =+ cos()/2) andy= *sin((}/2)
be analyzed by applying the same methods as used for ch&d. (15) is transformed into
lesteric liquid crystal$17]. In the incommensurate phase the . .
azimuthal director angle, which is described implicitly by _ JHo + 4= I
Egs.(6), (8), and(12), is no longer a simple linear function 2| Q| 8f0 dyv|He| +4H1zy 16\/H_12J0 dyya“ty
of the coordinatez. Consequently, the optical properties of
the ideal director helix in the commensurate state are ex- =8yH,f Ja’+ 1+a’arcsinii1/a)],
pected to be different from the properties of the disturbed
helix in the incommensurate state. It would be interesting tovhere
investigate how the director is connected to the bond net in
different chiral materials. 2 [Hel

a‘= .

V. CONCLUSION The substitutionp=arcsinh(14) which implies Ja+1

In conclusion, we found that two different configurations = costp/sinhp anda?= 1/(sintp)?, leads to the result
exist in chiral hexatic smectic phases with tilted molecules.

If the commensurate configuration is stable, the director and sinh2p+2p

the bond orientation are locked together, forming a common 27|Qul=4VHy (sinhp)?

helix. In the incommensurate state both degrees of freedom (A1)
are decoupled so that two different helices occur. A transi- |Hg|=4H 1,/ (sinhp)?,

tion from the commensurate to the incommensurate state can

be driven by reducing the coupling between the director angyhich is equivalent to the relatior(46).

the bond field. This coupling is weak in the vicinity of the  (||) Case H,,<0 and|Hg/4H,/>1. Choosingy, as in
smectict* —smecticF* phase transition temperature and if case(l) Eq. (A1) is transformed into

the molecular tilt angle is sufficiently small. For crystalline
smectic phases the incommensurate state is characterized by 1

the existence of a director helix, while this helix is com- 27T|Q1|=16\/—H12f0 dyvb*—y?,
pletely unwound in the commensurate state.

where the notatioh?= |Hg|/[4(—H1,)] is used. Performing
ACKNOWLEDGMENTS the integration and introducing a parameget arcsin(1b)

. . _ leads to the result
Financial support of the Sonderforschungsbereich 197 and

the Fonds der Chemischen Industrie is gratefully acknowl- 4\/T12(sin2EL 2p)
(A2)
APPENDIX: THRESHOLD CONDITIONS |H6| —4(— le)/(sinazy
FOR THE INCOMMENSURATE STATE
Equation(15) is solved for three different cases. which is equivalent to the relatiorid7). The resultA2) can
() Case H,>0. If H;,;>0 we can choosey,=0 for  @lso be obtained by replacimgby p/y—1 in Eq.(Al).
He>0 and 5,= /6 for Hg<0 and obtain () Case H»<0 and |Hg/4H 5/ <1. Minimizing the

potential W(Q) yields

V—2W(670) +2W(Q) Hi

4H,,’

cod)g=—

= \2Hg(1—cod)) + 2H (1 —cosaAY) for Hg>0,
whereQ,=617,. Now the positive square root can be writ-
V= 2W(670) + 2W(Q) ten as

V=2W(Qg) +2W(Q) =2 — Hy,codd — cod)y|.

=\ —2Hg(1+cod))+2H,(1—cosA)) for He<O,

Without loss of generality we can assume thatr<<(),
or written differently <. For 0<Qq<m Eq. (15) is expressed as
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27—Q 27+Q
27T|Q1|=2\/—H12[J ’(cof2y— cos)dQ 27T|Q1|:2\/—H12(J *(cosfy— cos)dO
Qo —Q

27+ Qg 2m—Qg
+f (cosﬂ—cosﬂo)dﬂ}. +f (cod) —cod)()dQ | .
2m—Qg 27+ Qg

Performing the integration yields

Thus we get Z|Qy=2y—Hyy(4sin+2mcod), 27| Q4| = 2= H 1 — 4sin+ 2mcos) o+ 4Qocod) )

—4Q,cod),) or
or

2 T Q;
] . (A3) 127 [—4(tanlg— Q) 7+ 2]cod)

Finally, introducing a parametep with the definition p
=0, for Q>0 andp=—Q, for Q,<0, Egs.(A3) and

2
Q1 } . (A4

~Hw= ( [4(tag— Qo) 7+ 2]cod),

In the other case, i 7<Qy=<0, Eq.(15) is rewritten (A4) can be unified so that we arrive at H48).
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